
HPCERC2001–001
8 February 2001

UESA Project Architecture
UHF Electronic Scanning Array

Authors

Dennis Lucero, Rahul Kulkami,
Vinod Ramdas, and Robert Ballance

The University of New Mexico
Albuquerque High Performance Computing Center

Disclaimer

The High Performance Computing, Education & Research Center (HPCERC)
provides a focus for high performance computing and communication at

the University of New Mexico (UNM). HPCERC is committed to innovative research
in computational and computer science with emphasis on both algorithm development

and application. As part of this commitment, HPCERC sponsors this technical report series.
The technical reports are subject to internal review by the HPCERC. However, the material,

as presented, does not necessarily reflect any position of the HPCERC. Further, neither UNM,
nor the AHPCC, makes any warranty or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information contained in this report.

 Frank L. Gilfeather, Executive Director, HPCERC

Brian T. Smith, Chief Scientist, HPCERC

John S. Sobolewski, Chief Technologist, HPCERC

Ernest D. Herrera, Associate Director, HPCERC

Susan Atlas, Associate Director, AHPCC Computer Systems Research

Bob Ballance, Associate Director, AHPCC Science & Engineering Research

1

Technical Report on the UESA Architecture
 January 2001
Authors:
Dennis Lucero strider@ahpcc.unm.edu
Rahul Kulkarni rahulak@ahpcc.unm.edu
Vinod Ramdas alomaram@ahpcc.unm.edu
Dr. Robert Ballance ballance@ahpcc.unm.edu

Abstract

This report describes the UESA project architecture. UESA is the UHF Electronic Scanning Array. Our
customer is the United States Navy, specifically the office of Naval Research (ONR) and the Navy
research Laboratory (NRL). The goal of the project is to facilitate a user who wants to view naval radar
data. To accomplish this the system will take data from radar sensors and make it available for
processing and viewing on multiple computing environments. The system must operate in a dynamic
environment, be an open system, deal with varying production rates, perform filtering and processing,
and handle bandwidth management issues. The architecture accomplishes these goals using Java, Jini,
XML, uniform data transport, a Portal program, and Web technologies.

 2

Table of Contents

1. Overview
 Introduction
 Problems and Issues to be solved
 Dynamic environment
 Open system -- new kinds of sensors, devices, data streams, etc
 Production rates, buffering
 Filtering and processing
 Bandwidth
2. Architecture
 Solution Techniques
 Java
 Jini
 XML
 Uniform data transport (XML+ frames)
 Portal program
 Web Technologies
 Overview of the architecture
 Sensor
 Portal
 Display
 Sample interaction and UML
3. Implementation
 Goals
 A summary of code
 Sample classes
 Capabilities of existing code
 High-Level UML
4. Status and Future
 Accomplishments
 Table of Classes
 Future work
 Surrogate Architecture
5. Acknowledgments
6. References

 3

 Overview

Introduction

The project vision is to facilitate a user who wants to view radar data. To accomplish this the user would

simply have to start a display application and select the type of data they were interested in from a menu

of available data streams. The display application would go out and find the desired type of data, retrieve

it, and display it. The user could decide what type of data is wanted, filter the data, and have it

preprocessed to their liking before receiving it. In this same way the radar data will be made available to

computers at any location. Any computer at any location that has this display application installed on it

could retrieve and display radar data without needing any prior configuration with the sources of data. In

short the system will take data from radar sensors and make it available for processing and viewing on

multiple computing environments.

Problems and Issues to be solvedProblems and Issues to be solvedProblems and Issues to be solvedProblems and Issues to be solved

Dynamic environment

The data producing and data displaying programs must be able to locate and use each other without

human intervention. This must work if they are located near each other (locally) or they are separated by

large distances (remotely). When data producing or data displaying programs start they must make

themselves available on the network automatically. When data producing or data displaying programs

shutdown they must remove themselves from the network automatically.

Open system -- new kinds of sensors, devices, data streams, etc

The types of sensors will likely change over time, as will the types of data produced by these sensors.

Because of this the format and content of the data streams can be expected to be changing over time.

The system must be able to function properly with these new types of devices, data, and data streams.

The system should not only be able to function with these changes but must do so without needing

changes made to the system itself. In this way the system can continue to run effectively without

recompilation even though the data, sensors types and data streams may change.

Production rates, buffering

The data producing programs and data receiving programs may not produce or receive data at the same

rate. The data produced by the data-producing program should be saved (buffered) for some period of

time in case a data-receiving program becomes available that needs it. The data-producing program

should not be encumbered with this saving (buffering) operation and should not need to be aware of the

number of data receiving programs available.

 4

Filtering and processing

The data must be available for filtering and processing regardless of its point of origin or its destination.

The user must be able to filter the data so as to only get the desired information. The user must be able

to process the data in any way available (compression, formatting, etc) before receiving it for display or

as a goal in itself.

Bandwidth Management

The data should be sent as pure as possible. This means that information needed to utilize the data

should not be sent with every data packet. The information needed to utilize the data should be sent only

once, at the beginning of transmission. In this way the �pure� data is all that must be sent, reducing the

bandwidth overhead incurred by using the system.

Architecture

SolutionSolutionSolutionSolution Techniques Techniques Techniques Techniques

Java

Java facilitates the transmission of classes. Classes needed at runtime can be retrieved using Java web

technologies such as serialization, class loader, and reflection.

Serialization provides the ability to store and retrieve Java objects.

A class loader is an object that is responsible for loading classes. It loads remote classes. Given the

name of a class, it should attempt to locate or generate data that constitutes a definition for the class.

Reflection enables Java code to discover information about the fields, methods and constructors of

loaded classes, and to use reflected fields, methods, and constructors to operate on their underlying

counterparts on objects, within security restrictions.

Jini

Jini is a set of specifications that enables services to discover each other on a network and that provides

a framework that allows those services to participate in certain types of operations. Jini allows

applications to interact; it allows this interaction to happen in a dynamic, robust way. There are three

basic features of this interaction.1

The Jini environment requires no user intervention when services are brought on or offline.1

The Jini community is self-healing: it can adapt when services, and consumers, come and go.1

 5

Consumers of Jini services do not need prior knowledge of the services implementation. Instead the

consumer loads the service implementation dynamically, with no configuration or user- intervention

required.1

These features make Jini ideal for a dynamic environment, where software-based services come and

go, and where administration of these services must be as simple (or non-existent) as possible.

XML

XML is a document-processing standard. XML allows you to create and format your own document

markups.3 There are numerous already written and tested parsing utilities available for XML. The XML

format allows for flexibility in document content allowing a parser to easily search a document for the

desired information. The XML document utilized in this system could also contain information about the

data being sent from Sensor to Display by the system.

Uniform data transport (XML + frames)

To enable the sensors and data types to change independently of the system a Frame object was

designed and is used to encapsulate the data for transport. Regardless of the form the data may take it

is written to and read from this Frame object. This Frame is what is passed by the system from the data-

producing programs to the data-receiving programs. Frames are analogous to packets, minus

fragmentation issues. In this way the data type can change without necessitating any changes

whatsoever to our system. An XML document is used to provide the data needed to properly use the

frame.

Data Stream Management

Programs will be needed to allow the data-producing programs and the data-receiving programs to

produce or receive at their �natural� rates. The program acts as a buffer between the data-producing

programs and the data receiving programs, saving the data until it is needed or is deemed no longer

viable. The program handles the complexity of multiple data-receiving programs so the data-producing

programs do not have this complexity added to them. The program is also used to provide a mechanism

for filtering and processing. The program can provide data to a data-filtering program or a data-

processing program and then have the filtered or processed data available for a display program.

Web Technologies

A web server makes the classes that need to be retrieved at runtime available. Using java technologies a

query to a web server returns the data needed to build the class in the local java virtual machine. The

query contains the locations and names of the classes to be retrieved.

 6

Overview of the architectureOverview of the architectureOverview of the architectureOverview of the architecture

The data originates in the Sensor, moves to a Portal where it is buffered and copied if necessary, and is

sent from there to one or more Displays. A Sensor can send to multiple Portals and a Portal can send to

multiple Displays. The only one-to-one relationship is that any given Portal can receive from only one

Sensor. A Portal can provide data to a data-filtering program or a data-processing program and then

have the filtered or processed data available for a display program.

Display

Portal

Sensor

Jini Look-up Service

Service ProviderConsumer

1

1
Data Flow

1

1..*

Data Flow

Consumer

 7

Sensor

The Sensor is the program that produces data. This is the data that is transported by our system to

various destinations. The Sensor program is a wrapper that will go around ReadiNet (or an actual

sensor) allowing it to use the Jini model. The Sensor can send data to multiple Portals. The Sensor

produces data that is used to test transmission of data. This is necessary because ReadiNet is

unavailable to us. The Sensor registers with the Jini look-up service�s as a consumer. The service it is

looking for is that of a data-consumer, a program that accepts data of the type produced by this Sensor.

The Sensor is a typical Jini client utilizing, discovery, registration, leasing, and helper services to facilitate

and administrate the network connection. See High-Level-UML for a class diagram.

Portal

The Portal is a data management program. It allows the Sensor and Display to produce or receive at

their �natural� rates. The portal is the buffer between the Sensor and the Display. It takes data from the

Sensor and gives it to the Display. The Portal receives from only one Sensor but sends to multiple

Displays. The Portal handles the complexity of multiple Displays, simplifying the Sensor, and provides a

mechanism for filtering and processing the data. The portal registers as a service provider with the Jini

look-up services. The portal provides two Jini services: (1)- it takes data from a Sensor; (2)- it provides

data to a Display. The portal is a typical Jini client utilizing, discovery, registration, leasing and helper

services to facilitate and administrate the network connection. See High-Level-UML for a class diagram

Display

The Display is the program that is the end destination for the data. The Display is a wrapper that will go

around SIMDIS and allow it to use the Jini model. The Display outputs the data it receives directly to the

screen. This is necessary because SIMDIS is unavailable to us. For instance we cannot create a Display

that wraps SIMDIS. The Display registers with the Jini look-up services as a consumer. The service it is

looking for is that of a data producer, a program that can provide data of the type wanted by this Display.

The Display is a typical Jini client utilizing, discovery, registration, leasing and helper services to facilitate

and administrate the network connection. See High-Level-UML for a class diagram

Sample interaction and UMLSample interaction and UMLSample interaction and UMLSample interaction and UML

Sensor-to-Portal

See diagram 1.2 Sensor-to-Portal

1. The Portal contacts the Jini look-up service and registers its receive port Proxy. This Proxy is what the

Sensor uses to send data to the Portal.

2. The Sensor contacts the Jini look-up service seeking a receive port proxy. If none is available the Jini

look-up service will notify the Sensor when one becomes available.

 8

3. The Jini look-up sends the receive port proxy to the Sensor.

4. The first call made by the Sensor to the Portal is a call to the function �bind� this function passes the

XML string to the Portal and alerts the Portal that it is about to receive data. The Portal at this point is

�bound� to this Sensor.

5. The Portal stops advertising the receive data service by discontinuing its receive port proxy from the

Jini look-up service.

6. The Sensor begins and continues to send data to the Portal.

7. The Portal, now that it has data, advertises its send data service by registering its �FromPortalProxy�.

8. The Sensor is notified the Portal is no longer accepting data. (For whatever reason)

9. The Sensor starts the process over by actively seeking a �to Portal� proxy from the Jini look-up

service.

(Although this sample interaction shows only one Jini look-up service. A Sensor would interact with

multiple look-up services in the same way.)

 9

Sensor Portal Jini Look-up

send "to Portal" proxy

No Longer accepting Data

registerFromPortalProxy()

discontinue "to Portal" proxy

registerToPortalProxy()

seek "to Portal" proxy

sending Data

Bool: ToPortalBind(....)

seek "to Portal" proxy

Diagram 1.2 Sensor-to-Portal

 10

Display-to-Portal

See diagram 1.3 Display-to-Portal

1. The Portal contacts the Jini look-up service and registers its �send port� Proxy � This Proxy is what the

Display uses to retrieve data from the Portal.

2. The Display contacts the Jini look-up service seeking a �send port� proxy. If none is available the Jini

look-up service will notify the Display when one becomes available.

3. The Jini look-up sends the �send port� proxy to the Display.

4. The first call made by the Display to the Portal is a call to the function �bind� this function passes the

buffer to be used with this Display to the Portal and receives a UID in return.

5. The Display begins and continues to retrieve data from the Portal.

6. The Display is notified the Portal no longer has data.

7. The Portal stops advertising its �data send� service by discontinuing its �send port� proxy.

8. The Portal advertises its �receive port� service by registering its �receive port� proxy with the Jini look-

up service.

9. The Display starts the process over by contacting the Jini look-up service and seeking a �send port�

proxy.

 (Although this sample interaction shows only one Jini look-up service. A Display would interact with

multiple look-up services in the same way.)

 (Although this sample interaction shows only one Display, multiple Displays� would interact with the

Portal in the same way)

 11

PortalDisplay Jini Look-up

send "from portal" proxy

seek "from Portal" proxy

retrieving Data

Object:FromPortalBind(....)

seek "from portal" proxy

registerToPortalProxy()

discontinue "fromPortalProxy'

No Data

registerFromPortalProxy()

Diagram 1.3 Display-to-Portal

 12

IMPLEMENTATION

Goals

The goals of NALU System are

1. To provide a dynamic User Interface to information from different sensors of radar. Also to any amount

of computations required, in-between, the final user and source.

2. To make the system is independent of the type of data and data processing (thanks to jini and XML).

Hence, the application is not just restricted to the radar sensors, but, to a large number of devices.

3. To provide a plug n' work application to different devices, which also include wireless devices. For the

wireless devices, the NALU system uses Surrogate Architecture, wherein, the wireless devices contact

the nearest surrogate which has all the capabilities to use the NALU system.

4. To provide subject authentication and authorization or remote calls.

The Original milestones we started with

1. Develop an extensible framework for sensor/display interaction and data management.

2. To submit a job to supercomputer and then transmit the processed data around.

3. To design a surrogate for wireless devices.

4. To run the application with real data.

A summary of code

There are different types of data depending of different sensors. If these are to be passed around, the

programs should be aware of all the types. This leads to lot of complexities. However, classes Sensor,

Display and Portal are kept independent of the type of data by passing around Frames. These classes

only need to have the knowledge of Frames. The Frame Class contains a single data variable, a byte

array, in which the corresponding data is added. This is done using IDataHandler interface. This

interface has methods to put data into the frame and get data from the frame. Thus any class

implementing this Interface has the intelligence to put the data, in to the Frame, and out of Frame. The

class implementing IDataHandler, will write out its individual data variables into the byte array, thus

serializing itself into the frame. The concept of Frame was a significant step because it not only freed the

Classes of the type of data but also allowed any type of data to be shipped across. Just a simple

program implementing the IDataHandler interface is all that is needed.

 13

The Portal is a �Jini Service�. Sensor and Display is �Jini Client�. Whenever a Sensor has some data to

ship across, it registers with Jini Lookup service as a client, requesting for a �free� Portal. If available, the

Lookup service hands over a �proxy� of this portal. The first thing that the sensor will do is calling the

BIND method in the portal, which will make the portal available only for this sensor. Also, this method will

change the attributes of the portal, so as to reflect the type of data it holds. This will avoid the ambiguity

of information from different Sensors. The Portal has an �activatable Backend� which then talks to the

Sensor, getting the frames from sensor and buffering it. The activation framework provides a way for a

remote object to consume no memory or CPU resources until it is needed. Activation provides a nice

way to have very long-lived remote objects that don�t have to be active when there are not being used.

If a Portal is not available with the Lookup service, the Sensor uses Jini�s Event Listener. This will then

ensure the Sensor a Portal as soon as one is available.

Similarly, Display registers with Jini Lookup service as a client requesting for a bounded portal with

attributes specifying respective data. If available, it gets the proxy of this Portal. In case such a portal is

not available, the Display too uses Event Listeners.

The programs are self-healing, i.e. to say that, if at all a portal goes off line for some reason, the sensor

sets the event listener to get next free portal. The portal uses persistent storage, wherein it stores its

service ID and its attributes. So that whenever it comes online it uses its own unique features.

How does the Display program retrieve the data from the Frame obtained? The class implementing the

IDataHandler actually can be retrieved at runtime from local or remote sites. The sensor program takes

an XML document as a runtime argument. This document contains all the information (location, class

names, etc) needed for the Display programs to retrieve and utilize the class (or classes) that implement

the IDataHandler interface. The sensor before sending any Frames sends out an XML format string

stating where its class, that implements IDataHandler can be found. The Display program first parses

this string to get the location of this class and then downloads it in its JVM using ClassLoader (a Java

class to load a remote class into the local JVM).

Furthermore, Display sends a buffer to be used with their particular data in this way providing their own

strategy for data buffering, expiration, retrieval etc. Thus we can have one-to-many relationship between

the Portal and Displays.

One of the latest additions in the current design/development iteration is the processing of the data by a

supercomputer one of the clients sends a buffer that keeps copies of all data passing through it and

when a flag amount of data has been gathered a job is submitted to Blackbear, one of the

supercomputers at AHPCC, in this design iteration it is a �toy� job submission to learn how to best

perform this sort of activity.

 14

Sample classes

Frame Class This is the most general and most important class. The types of data may vary depending

on different sensors. However, we need a system that should work with any data type. Here comes the

concept of Frame. Instead of having all the programs know all data types, they now, need to know only

the Frame class. The Frame class contains a single data variable, a byte array, and has methods to

write the byte array and read the byte array. A byte array is most general data type, i.e. any data type

can be converted to a series of bytes. Thus, we just need to get our data into this byte array.

Class Frame implements Serializable {
byte [] bytearray;

public Object getObject() {
return bytearray;

}

public Object setObject(byte[] input) {
bytearray = input;

}
}

IDataHandler Interface This interface defines methods that will read the proper data from the frame and

write the data into the frame.

public interface IDataHandler {
public void readFromFrame(Frame input);
public void writeToFrame(Frame input);

}

DataHandler Class This class implements the IDataHandler Interface and hence defines the above two

methods. Presently this class has �toy� data, which is serialized (or written in byte form) into the Frame.

This Class serializes its data in its own way. On the other side (Display), this class is downloaded at

runtime to extract the information using readFromFrame(Frame input) method.

public class DataHandler implements IDataHandler, Serializable {
<data variables>

…
public void writeToFrame(Frame input) {

…
<writes the serialized information into the Frame’s byte array>

…
}
public void readFromFrame(Frame input) {

…
<reads the serialized information from the Frame’s byte array>

…
}

 15

public byte[] writeObject() {
…

<serializes its data into a byte array. this method is called in
writeToFrame method>

…
}
public void readObject(Object ob) {

…
<reads out the contents from the byte array into the data variables
of this class>

…
}

}
Backend Class This is an inner class of Class Portal. The Portal class is actually a wrapper over

Backend class. The actual process of buffering the data is done in this class. While the Portal class

keeps track of lookup services, leasing, discovery etc. This class has Sensor only methods, and Display

only methods. An important point here is that this class is activatable. That is to say, it comes alive only

when called. This framework provides a way for remote object to consume no memory or CPU

resources until it is needed.

public static class Backend extends Activatable implements BackendProtocol
{

public Boolean toPortalBind(String input) {
…

<method called by Sensor. This will bind the portal to the particular
Sensor and also the XML string is passed>

…
}

public boolean toPortal(Object input) throws RemoteException {
…

<this method is called by Sensor. This method stores the Frames in a
buffer>

…
}
public Boolean fromPortalBind(Object buffer) {

…
<called by Display. The display is given a unique Identity number(ID)
and based on its ID its type of buffer is stored>

…
}
public Object fromPortal() throws RemoteException {

…
<this method is called by Display. This method sends the next frame
from the buffer to the display>

…
}
public Object fromPortal(int UID) throws RemoteException {

…
<this method is called when the display send a buffer specifying the
way it wants the data. The UID implies unique identity given by
portal to the particular Display>

…
}

}

 16

There are many classes providing different functionalities. These were few fundamental classes. The

modules Sensor, Display, and Portal are wrapper classes which keep track of lookup services,

discovery, leasing, etc.

Capabilities of existing code

The code is in complete agreement with Jini specifications and uses powers of jini Technology.

The Portal, a Jini service, uses an Activatable Back-end process, which implies that the backend comes

alive only when called, otherwise it remains deactivated. This framework provides a way for remote

object to consume no memory or CPU resources until it is needed.

All the programs need to know only the Frame class. Thus the data is decoupled from the system.

Hence, changes to the data do not require changes to/recompilation of the system. This keeps the

process simple and software more robust.

The IDataHandler interface has the methods to write data into the Frame, and read data from the frame.

Only the class that implements IDataHandler knows how the data is written. The display needs to know

ONLY the IDataHandler interface and it downloads the class (es) that implements IDataHandler

interface, at runtime, and loads it in its JVM.

This downloading of classes saves a lot of bandwidth. Since transferring the class information with each

frame, adds up a significant amount of overhead. This is especially useful for wireless devices.

XML provides platform independent data. XML format allows incredible flexibility because of the META

information it contains describing itself.

The code is superbly dynamic. Once the data is available with the sensor, it sets an event listener,

whereby, once a free portal is available it gets that Portal and the data is transmitted without human

intervention. For any data, we simply have to write a class implementing the IDataHandler interface.

The portal uses persistent data storage. This implies that it stores its attributes, serviceID in a file. So that

if for any reason it goes off line, upon restarting it will use the same information rather than starting the

process again.

Once a sensor gets a Portal, it first binds the Portal to it. Thus the portal will be available to this sensor

only. This will avoid ambiguity of information from different Sensors.

Once the Portal is bound to a Sensor, it registers with Lookup so that it is then available for Displays

requiring that data. Furthermore, each Display sends a buffer to be used with their particular data in this

way providing their own strategy for data buffering, expiration, retrieval, etc.

 17

All three modules, Portal, Sensor, and Display are robust and well behaved. They correctly handle a

shutdown or crash by any or all of the other modules. They also, actively pursue new services on the

network when they are freed from their current connection due to job termination, shutdown, or a crash.

The code supports, any number of data processing between the Portal and Display. This was one of the

latest additions in the current design/development. For example, one of the Displays sends a buffer that

keeps copies of all data passing through it and when a flag amount of data has been gathered a job is

submitted to the respective supercomputer. The result is then passed to display.

 18

Portal

Backend
toPortalProxy fromPortalProxy

interface

toPortalInterfac

interface

fromPortalInterface

PersistentData

ToPortalState and FromPortalState

are members of this class. They con

all relevent persistent data and ar

to/read from files.

interface

BackendProtocol

+fromPortal():Object

+fromPortal(UID:int):Object

+toPortal(input:Object):boolean

+toPortalBind(input:String):boole

+fromPortalBind():String

+fromPortalBind(buffer:Object):Ob

interface

ServiceIDListener

FromPortalIDListene ToPortalIDListener

As per Jini specs this clas

obtains a serviceID for all

use.

interface

Ibuffer1

This interface is used

decouple the buffers us

by the Display's from

the Portal.

High-Level UML

 Portal

 19

Sensor

Listener

interface

RemoteEventListener
interface

DiscoveryListener

Discoverer

XMLDescriptor

Contains the names and locat

of classes implementing the

IDataHandler interface. Also

contain information about th

itself.

FrameDataHandler's

are written into/

from this class

interface

IDataHandler

IDataHandler1

DataHandler

All Sensor data is

transported within this

class. This class is fully

decoupled from the

Sensor class and changes

to this class do not requi

changes to, or recompilati

the Sensor classes.

Any DataHandler

class must implemen

this interface.

Sensor

 20

Display

interface

RemoteEventListener1

interface

DiscoveryListener

Listener1 Discoverer1

Frame1DataHandler's

are written into/

from this class

XMLDescriptor

Contains the names and locat

of classes implementing the

IDataHandler interface. Also

contain information about th

itself.

interface

IDataHandler1

Any DataHandler

class must implemen

this interface.

All Sensor data is

transported within this

class. This class is fully

decoupled from the

Display class and changes

to this class do not requir

changes to, or recompilatio

the Display classes.

IDataHandler

DataHandler

interface

Ibuffer

Buffer

This interface is used to decoup

buffers used by the Display's fr

the Portal.

Display

 21

Status and Future

 Accomplishments

Phase I Designed a robust system to transfer toy data from Sensor to Display using the middleman

Portal. All the three modules were robust, dynamic and well behaved. All three modules, Sensor,

Display, and Portal were independent of type of data being transferred. All they need to know was

Frame Class. The data from a sensor was serialized into the byte array of Frame Class. And a Frame

object was shipped. The IDataHandler interface was enough to deserialize the data from the byte array

of Frame.

Phase II The code was further extended to be robust and well behaved. With introduction of Frame

Class and IDataHandler interface, we simply have to write a DataHandler class (default name, the name

of this class can be anything, maybe related to the type of data it handles) for the type of data from

sensor. The DataHandler class will then implement the methods in IDataHandler interface. This

DataHandler class was then kept at a known location. And instead of shipping class information each

time an XML format string is shipped first. This string holds the class name and location information.

XML provides incredible flexibility because of the META information it contains. The Portal does not

need to have any information of DataHandler class or its location. Its just buffers the string and the

frames. Upon request from a Display, it sends the string across. The Display then parses the string and

obtains the class name and location. It downloads it in its JVM using the CLASSLOADER class. Once in

the JVM, the Display can then know all the methods and data variables in it by using REFLECTION.

�Reflection' is the ability of software to analyze itself. It allows you to analyze a software component and

describe its capabilities dynamically, at run time rather than at compile time. Display then extracts the

information from DataHandler class and uses the data in the way it is designed to display.

Further, the Portal can support multiple Displays. The Portal provides each display with a unique identity

number, and uses this to transfer the frames. Furthermore, each Display sends a buffer to the Portal

specifying the way it wants the data. For example a display program may request only the data from past

5 minutes!

Also, the Display can send a buffer that keeps copies of all data passing through it and when a flag

amount of data has been gathered a job can be submitted to a supercomputer. Thus we can obtain any

type of data processing in between to obtain desired information.

Table of classes

Frame class has a byte array and holds the information to be shipped

DataHandler Class implements the IDataHandler interface, and has methods to put data into the Frame

object and also to get the data from Frame.

 22

Sensor Class is a wrapper class for sending data (Frames), and participates in Jini discovery, Leasing,

keeps track of available lookup services, and available Portals.

Display Class is a wrapper class for display of data, and participates in Jini discovery, Leasing, keeps

track of available lookup services and the Portals holding the required data.

Portal Class is a Jini service. Registers with lookup services and provides an interaction between Sensor

and Display.

DefaultBuffer Class A buffer in which the frames will be stored by Portal and distributed to different

Displays depending on the buffer sent by them.

BindInfo Class has methods to set and get the XML string containing the class name(s) and location(s)

that have intelligence to extract data from the Frame. Also holds information of the unique identity

provided to Display by Portal.

ClassInfo Class encapsulates the class name and class location (of DataHandler class).

StringParser Class used by Display class to parse the XML string obtained from Portal containing the

class name(s) and location(s) of DataHandler class.

BufferTwo Class implements IBuffer interface and is used by Display class to specify the type of buffer it

wants from the Portal.

IDataHandler Interface has methods to insert and extract data from the Frame.

ToPortalInterface used by Sensor class to ship frames to Portal.

FromPortalInterface used by Display to get frames from Portal.

IBuffer Interface has methods which are used by buffer as required by Display from Portal.

Future work

1. To extend the capability of this code to wireless devices. However, the wireless devices may not

have enough memory. Hence to design a surrogate which can then use the existing code itself. A

surrogate will have just enough computational resources to be able to talk to both the devices and

the NALU system. The surrogate architecture is discussed below.

Surrogate Architecture
For a device to participate in a Jini network, it should be able to perform discovery, download and

execute classes written in the Java programming language, and also may be needed to export classes

written in Java. Many devices, for one reason or another, cannot participate directly in a Jini network.

 23

Surrogate architecture exactly addresses this problem by defining a means by which these devices, with

the aid of third party, can participate in a Jini network while still maintaining the plug-and-work model of

Jini technology. The surrogate architecture is explained in detail after this section.

2. To use real sensor data and to improve upon the DataHandler class to read directly the sensor data

and serialize it into the Frame.

3. The submission of the job to the super computer is now just a test job submission. The archived data

must be transported to the super computer so that real processing can occur.

4. Integrate the complete code and have a web GUI (Graphic User Interface), so that the user simply

has to choose from a menu.

Surrogate Architecture

For a device to participate in a Jini network, it should be able to perform discovery, download and

execute classes written in the Java programming language, and also may be needed to export classes

written in Java. Many devices, for one reason or another, cannot participate directly in a Jini network.

Surrogate architecture exactly addresses this problem by defining a means by which these devices, with

the aid of third party, can participate in a Jini network while still maintaining the plug-and-work model of

Jini technology.

The surrogate acts as a communicator between the device and the Jini network. The machine (called

Host capable machine) which runs a surrogate should have computational resources to execute code

written in Java on behalf of the device and also provide the necessary resources that such code may

need. The surrogate architecture is targeted for devices that are not capable of downloading coded,

because of either computational resource or network connectivity limitations.

(figure from JiniTM Technology Surrogate Architecture Specification2 version 0.6)

Host-Capable Machine

Surrogate Host

Host
Resour es

Interconnect
Adapter Device

 24

The figure shows a surrogate host present on a host-capable machine. The Host-capable machine has

the surrogate host, and the required resources. An interconnect adapter monitors the device

interconnect. The first part of surrogate protocol is discovery, where, the device and the surrogate host

find each other. Once discovery has been performed the device�s surrogate is retrieved. Once the

surrogate is loaded, the reachability of device is checked. Reachability means that a usable

communication path exists between the surrogate and the device that it represents. Once the surrogate

is executing, it may perform any task necessary for the device, including accessing the Jini network. If

the device becomes unreachable for some reason (like the device being switched off, out of range,

surrogate failure�) the surrogate must be stopped and resources restored/ device must search for an

available surrogate depending on the reason for loss of communication.

In Detail A surrogate is a Java Object that represents a device. It may be retrieved from a device in an

interconnect-specific manner or from some other appropriate source and loaded into the surrogate host.

The host executes the code within the surrogate to operate on behalf of the device. The surrogate host

should provide for a Java 2 platform runtime environment, a Jini runtime environment, export server and

surrogate API�s. The minimal Java 2 platform is Java 2 standard edition v1.2.2. Each surrogate is given

its own thread and its own thread group. The surrogate may be executed in a separate thread group

within the surrogate host�s virtual machine or a thread group in a separate virtual machine. The Jini API

classes must be available through the surrogate�s class loader before a surrogate is loaded. The export

server is the means by which surrogate resources are exported to remote clients. The export of

resources particularly class files are necessary for many Jini operations. The surrogate specifies which

resources are to be exported in a file that is packaged along with other surrogate information. Each

surrogate has its own export codebase annotation. All of the URLs generated by the export server that

refer to JAR resources are used by the surrogate host to set the export codebase annotation of the

surrogate�s classes. The surrogate is packaged in a JAR file containing

A manifest file containing the following elements:

a SurrogateActivator header specifying the name of surrogate activator class and

SurrogateExport headers specifying resources (if any) to be exported by the surrogate host on

behalf of the surrogate.

The resources that implement the surrogate. These resources may be classes written in Java, as well as

any other data such as HTML files, icons.

A class that implements the SurrogateActivator interface.

 25

SurrogateActivator is an interface defined in surrogate APIs net.jini.surrogate package. This

interface defines the methods used to control the execution of the surrogate namely activate and

deactivate. The activate method is called by the surrogate host to activate the surrogate. This

method is used to allocate resources and start any threads that the surrogate needs. This method must

return in a timely manner. If this method throws an exception, surrogate host assumes that the surrogate

is not active and discards the surrogate. The deactivate method is called to deactivate the surrogate.

All the threads started by this surrogate must be deactivated i.e. this method should undo the work done

by the activate method. The method activate takes instances of HostContext interface

(hostContext) and Object (called here interconnectContext). The type of interconnectContext Object

depends on the interconnect utilized by the associated device.

Package net.jini.surrogate;
Public interface SurrogateActivator {

void activate (HostContext hostContext, Object interconnectContext)
throws Exception;

void deactivate ();
}

The HostContext interface is also defined in net.jini.surrogate package and provides methods

to access the execution environment of surrogate host.

Package net.jini.surrogate;
Import net.jini.discovery.DiscoveryManagement;
Public interface HostContext {

DiscoveryManagement getDefaultDiscoveryManager ();
void cancelActivation ();
java.net.URL[] getExportURLs ();

}
 The getDefaultDiscoveryManager method returns an object that implements the

DiscoveryManagement interface. This object defines the default discovery management policy for the

surrogate host.

The method informs the surrogate host that the surrogate is to be deactivated. The host does not call the

surrogate activator�s deactivate method as a result of a call to cancelActivation.

The getExportURLs method returns an array of URLs representing the exported resources specified

by the surrogate and being handled by surrogate host�s export server. The number of elements in the

array correspond to the number of Surrogate Export headers in the surrogate JAR file.

Along with above interfaces defined in package net.jini.surrogate is also defined GetCodebase

interface. Now, each surrogate has its own export codebase annotation and by default the surrogate

host sets the export codebase annotation to be the list of export JAR file resources defined in the

Surrogate Export headers. Using this interface, the surrogate can overwrite this list by a new export

codebase.

 26

Package net.jini.surrogate;
Public interface GetCodebase {
java.net.URL[] getCodebase (HostContext hostContext,

Object interconnectContext)
throws Exception;

}
The above interfaces are independent of the type of interconnect. In version 0.6 (the current version) of

Surrogate Architecture defines two more interfaces (keepAliveManager interface and

keepAliveHandler interface) that are interconnect dependent. Their use is dependent on how

reachability is defined for an interconnect.

An interconnect is defined as the logical and physical connection between the surrogate host and a

device. The interconnect specification 4 defines protocol and model for IP-capable interconnects. IP can

be implemented on various physical layers such as Ethernet or wireless networks. The IP surrogate

protocol (defined in Interconnect specifications) is applicable to any physical layer that supports IP. The

first thing done is Discovery. By this, the surrogate host and the device locate each other.

The surrogate host uses a multicast host announcement protocol to announce its presence on the

interconnect and indicate that it is available to serve as a host. For this, it creates a listener to listen for

registering requests, constructs an announcement message containing its IP address and port used and

multicasts at regular intervals. A device using this protocol creates a listener for host announcement

messages and upon receiving a host announcement message, sends a registration request to the host

using the IP address and port contained in the message.

However, the discovery can also be initiated by device. The device uses multicast host request protocol

to find a surrogate host at an unknown location. For this, the device creates a UDP listener to receive

host response message, constructs a host request message that contains the IP address the port of the

host response listener and multicasts this at regular intervals. Upon receiving a host response message,

it sends a unicast UDP registration request to the IP address and port contained in the host response

message. A surrogate host performing this protocol creates a listener for registration requests, creates a

listener for host request messages and upon receiving such a message, sends a host response

message providing its IP address and port for registration to the address in the request message.

The type of discovery is dependent on whether the device can perform discovery or not. However, once

a device has obtained the address and port of surrogate host it can send a registration request either as

unicast UDP message or open a TCP connection to surrogate host and send the message across using

this connection. If the registration is sent as a unicast UDP packet the message size is limited to 512

bytes. The registration request message 3 should have the following format:

int protocol version

int length of surrogate URL

 27

byte[] surrogate URL

int length of initialization data

byte[] initialization data

int length of surrogate

byte[] surrogate

the surrogate field is a byte array that surrogate host interprets as a JAR file containing the device�s

surrogate. The contents of the JAR file were described above in the first paragraph of In Detail. Upon

receipt of registration request the surrogate host, checks for surrogate URL, and if present, retrieves the

surrogate JAR file from that URL. If not present (length of surrogate URL field is zero), attempts to

extract the surrogate JAR file from the registration request message itself. Once the surrogate is

executing, it may perform any task necessary for the device, including accessing the Jini network.

 28

Acknowledgments

The Office of Naval Research through federal contract with the Maui High Performance Computing

Center made this research possible, contract # 29601-96-D-0128.

Brian Sayrs was the project head at the Maui High Performance Computing center. The authors

gratefully acknowledge his support.

Robert Ballance was the project head at the Albuquerque High Performance Computing center. The

authors gratefully acknowledge his support.

We thank Brian Bowers a former employee of the Albuquerque High Performance Computing center

Brian was on the project in the early design stages until he left to attend Graduate school at the

University of Wisconsin at Madison.

References

1. W. Keith Edwards, Core JINI (1999 Prentice hall PTR Prentice-Hall Inc. Upper Saddle River, NJ

07485)

2. http://developer.jini.org/exchange/projects/surrogate/surrogate.pdf

3. Didier Martin, etal. Professional XML (2000 Wrox Press LTD., Birmingham, UK.

4. http://developer.jini.org/exchange/projects/surrogate/IPInterconnect.pdf

